Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: covidwho-2300315

ABSTRACT

Several effective COVID-19 vaccines are administered to combat the COVID-19 pandemic globally. In most African countries, there is a comparatively limited deployment of vaccination programs. In this work, we develop a mathematical compartmental model to assess the impact of vaccination programs on curtailing the burden of COVID-19 in eight African countries considering SARS-CoV-2 cumulative case data for each country for the third wave of the COVID-19 pandemic. The model stratifies the total population into two subgroups based on individual vaccination status. We use the detection and death rates ratios between vaccinated and unvaccinated individuals to quantify the vaccine's effectiveness in reducing new COVID-19 infections and death, respectively. Additionally, we perform a numerical sensitivity analysis to assess the combined impact of vaccination and reduction in the SARS-CoV-2 transmission due to control measures on the control reproduction number (Rc). Our results reveal that on average, at least 60% of the population in each considered African country should be vaccinated to curtail the pandemic (lower the Rc below one). Moreover, lower values of Rc are possible even when there is a low (10%) or moderate (30%) reduction in the SARS-CoV-2 transmission rate due to NPIs. Combining vaccination programs with various levels of reduction in the transmission rate due to NPI aids in curtailing the pandemic. Additionally, this study shows that vaccination significantly reduces the severity of the disease and death rates despite low efficacy against COVID-19 infections. The African governments need to design vaccination strategies that increase vaccine uptake, such as an incentive-based approach.

2.
Front Public Health ; 11: 1085991, 2023.
Article in English | MEDLINE | ID: covidwho-2299072

ABSTRACT

Background: The Efficacy and effectiveness of vaccination against SARS-CoV-2 have clearly been shown by randomized trials and observational studies. Despite these successes on the individual level, vaccination of the population is essential to relieving hospitals and intensive care units. In this context, understanding the effects of vaccination and its lag-time on the population-level dynamics becomes necessary to adapt the vaccination campaigns and prepare for future pandemics. Methods: This work applied a quasi-Poisson regression with a distributed lag linear model on German data from a scientific data platform to quantify the effects of vaccination and its lag times on the number of hospital and intensive care patients, adjusting for the influences of non-pharmaceutical interventions and their time trends. We separately evaluated the effects of the first, second and third doses administered in Germany. Results: The results revealed a decrease in the number of hospital and intensive care patients for high vaccine coverage. The vaccination provides a significant protective effect when at least approximately 40% of people are vaccinated, whatever the dose considered. We also found a time-delayed effect of the vaccination. Indeed, the effect on the number of hospital patients is immediate for the first and second doses while for the third dose about 15 days are necessary to have a strong protective effect. Concerning the effect on the number of intensive care patients, a significant protective response was obtained after a lag time of about 15-20 days for the three doses. However, complex time trends, e.g. due to new variants, which are independent of vaccination make the detection of these findings challenging. Conclusion: Our results provide additional information about the protective effects of vaccines against SARS-CoV-2; they are in line with previous findings and complement the individual-level evidence of clinical trials. Findings from this work could help public health authorities efficiently direct their actions against SARS-CoV-2 and be well-prepared for future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Intensive Care Units , Vaccination , Hospitals
3.
Front Public Health ; 11: 1087580, 2023.
Article in English | MEDLINE | ID: covidwho-2272722

ABSTRACT

Introduction: Evaluating the potential effects of non-pharmaceutical interventions on COVID-19 dynamics is challenging and controversially discussed in the literature. The reasons are manifold, and some of them are as follows. First, interventions are strongly correlated, making a specific contribution difficult to disentangle; second, time trends (including SARS-CoV-2 variants, vaccination coverage and seasonality) influence the potential effects; third, interventions influence the different populations and dynamics with a time delay. Methods: In this article, we apply a distributed lag linear model on COVID-19 data from Germany from January 2020 to June 2022 to study intensity and lag time effects on the number of hospital patients and the number of prevalent intensive care patients diagnosed with polymerase chain reaction tests. We further discuss how the findings depend on the complexity of accounting for the seasonal trends. Results and discussion: Our findings show that the first reducing effect of non-pharmaceutical interventions on the number of prevalent intensive care patients before vaccination can be expected not before a time lag of 5 days; the main effect is after a time lag of 10-15 days. In general, we denote that the number of hospital and prevalent intensive care patients decrease with an increase in the overall non-pharmaceutical interventions intensity with a time lag of 9 and 10 days. Finally, we emphasize a clear interpretation of the findings noting that a causal conclusion is challenging due to the lack of a suitable experimental study design.


Subject(s)
COVID-19 , Communicable Disease Control , COVID-19/epidemiology , Humans , Germany/epidemiology , Linear Models , Hospitalization , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL